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Binary Trees

The list representations of Chapter 4 have a fundamental limitation: Either search
or insert can be made efficient, but not both at the same time. Tree structures
permit both efficient access and update to large collections of data. Binary trees in
particular are widely used and relatively easy to implement. But binary trees are
useful for many things besides searching. Just a few examples of applications that
trees can speed up include prioritizing jobs, describing mathematical expressions
and the syntactic elements of computer programs, or organizing the information
needed to drive data compression algorithms.

This chapter begins by presenting definitions and some key properties of bi-
nary trees. Section 5.2 discusses how to process all nodes of the binary tree in an
organized manner. Section 5.3 presents various methods for implementing binary
trees and their nodes. Sections 5.4 through 5.6 present three examples of binary
trees used in specific applications: the Binary Search Tree (BST) for implementing
dictionaries, heaps for implementing priority queues, and Huffman coding trees for
text compression. The BST, heap, and Huffman coding tree each have distinctive
features that affect their implementation and use.

5.1 Definitions and Properties

A binary tree is made up of a finite set of elements called nodes. This set either
is empty or consists of a node called the root together with two binary trees, called
the left and right subtrees, which are disjoint from each other and from the root.
(Disjoint means that they have no nodes in common.) The roots of these subtrees
are children of the root. There is an edge from a node to each of its children, and
a node is said to be the parent of its children.

If n1, n2, ..., nk is a sequence of nodes in the tree such that ni is the parent of
ni+1 for 1 ≤ i < k, then this sequence is called a path from n1 to nk. The length

153



154 Chap. 5 Binary Trees

G I

E F

A

CB

D

H

Figure 5.1 An example binary tree. Node A is the root. Nodes B and C are A’s
children. Nodes B and D together form a subtree. Node B has two children: Its
left child is the empty tree and its right child is D. Nodes A, C, and E are ancestors
of G. Nodes D, E, and F make up level 2 of the tree; node A is at level 0. The
edges from A to C to E to G form a path of length 3. Nodes D, G, H, and I are
leaves. Nodes A, B, C, E, and F are internal nodes. The depth of I is 3. The height
of this tree is 4.

of the path is k− 1. If there is a path from node R to node M, then R is an ancestor
of M, and M is a descendant of R. Thus, all nodes in the tree are descendants of
the root of the tree, while the root is the ancestor of all nodes.

The depth of a node M in the tree is the length of the path from the root of the
tree to M. The height of a tree is one more than the depth of the deepest node in
the tree. All nodes of depth d are at level d in the tree. The root is the only node at
level 0, and its depth is 0.

A leaf node is any node that has two empty children. An internal node is any
node that has at least one non-empty child.

Figure 5.1 illustrates the various terms used to identify parts of a binary tree.
Figure 5.2 illustrates an important point regarding the structure of binary trees.
Because all binary tree nodes have two children (one or both of which might be
empty), the two binary trees of Figure 5.2 are not the same.

Two restricted forms of binary tree are sufficiently important to warrant special
names. Each node in a full binary tree is either (1) an internal node with exactly
two non-empty children or (2) a leaf. A complete binary tree has a restricted shape
obtained by starting at the root and filling the tree by levels from left to right. In the
complete binary tree of height d, all levels except possibly level d−1 are completely
full. The bottom level has its nodes filled in from the left side.
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Figure 5.2 Two different binary trees. (a) A binary tree whose root has a non-
empty left child. (b) A binary tree whose root has a non-empty right child. (c) The
binary tree of (a) with the missing right child made explicit. (d) The binary tree
of (b) with the missing left child made explicit.

(a) (b)

Figure 5.3 Examples of full and complete binary trees. (a) This tree is full (but
not complete). (b) This tree is complete (but not full).

Figure 5.3 illustrates the differences between full and complete binary trees.1

There is no particular relationship between these two tree shapes; that is, the tree of
Figure 5.3(a) is full but not complete while the tree of Figure 5.3(b) is complete but
not full. The heap data structure (Section 5.5) is an example of a complete binary
tree. The Huffman coding tree (Section 5.6) is an example of a full binary tree.

1While these definitions for full and complete binary tree are the ones most commonly used, they
are not universal. Some textbooks even reverse these definitions! Because the common meaning
of the words “full” and “complete” are quite similar, there is little that you can do to distinguish
between them other than to memorize the definitions. Here is a memory aid that you might find
useful: “Complete” is a wider word than “full,” and complete binary trees tend to be wider than full
binary trees because each level of a complete binary tree is as wide as possible.
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Any number of
internal nodes

Figure 5.4 A tree containing n internal nodes and a single leaf.

5.1.1 The Full Binary Tree Theorem

Some binary tree implementations store data only at the leaf nodes, using the inter-
nal nodes to provide structure to the tree. More generally, binary tree implementa-
tions might require some amount of space for internal nodes, and a different amount
for leaf nodes. Thus, to analyze the space required by such implementations, it is
useful to know the minimum and maximum fraction of the nodes that are leaves in
a tree containing n internal nodes.

Unfortunately, this fraction is not fixed. A binary tree of n internal nodes might
have only one leaf. This occurs when the internal nodes are arranged in a chain
ending in a single leaf as shown in Figure 5.4. In this case, the number of leaves
is low because each internal node has only one non-empty child. To find an upper
bound on the number of leaves for a tree of n internal nodes, first note that the upper
bound will occur when each internal node has two non-empty children, that is,
when the tree is full. However, this observation does not tell what shape of tree will
yield the highest percentage of non-empty leaves. It turns out not to matter, because
all full binary trees with n internal nodes have the same number of leaves. This fact
allows us to compute the space requirements for a full binary tree implementation
whose leaves require a different amount of space from its internal nodes.

Theorem 5.1 Full Binary Tree Theorem: The number of leaves in a non-empty
full binary tree is one more than the number of internal nodes.

Proof: The proof is by mathematical induction on n, the number of internal nodes.
This is an example of an induction proof where we reduce from an arbitrary in-
stance of size n to an instance of size n− 1 that meets the induction hypothesis.

• Base Cases: The non-empty tree with zero internal nodes has one leaf node.
A full binary tree with one internal node has two leaf nodes. Thus, the base
cases for n = 0 and n = 1 conform to the theorem.
• Induction Hypothesis: Assume that any full binary tree T containing n− 1

internal nodes has n leaves.
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• Induction Step: Given tree T with n internal nodes, select an internal node I
whose children are both leaf nodes. Remove both of I’s children, making
I a leaf node. Call the new tree T′. T′ has n − 1 internal nodes. From
the induction hypothesis, T′ has n leaves. Now, restore I’s two children. We
once again have tree T with n internal nodes. How many leaves does T have?
Because T′ has n leaves, adding the two children yields n+2. However, node
I counted as one of the leaves in T′ and has now become an internal node.
Thus, tree T has n+ 1 leaf nodes and n internal nodes.

By mathematical induction the theorem holds for all values of n ≥ 0. 2

When analyzing the space requirements for a binary tree implementation, it is
useful to know how many empty subtrees a tree contains. A simple extension of
the Full Binary Tree Theorem tells us exactly how many empty subtrees there are
in any binary tree, whether full or not. Here are two approaches to proving the
following theorem, and each suggests a useful way of thinking about binary trees.

Theorem 5.2 The number of empty subtrees in a non-empty binary tree is one
more than the number of nodes in the tree.

Proof 1: Take an arbitrary binary tree T and replace every empty subtree with a
leaf node. Call the new tree T′. All nodes originally in T will be internal nodes in
T′ (because even the leaf nodes of T have children in T′). T′ is a full binary tree,
because every internal node of T now must have two children in T′, and each leaf
node in T must have two children in T′ (the leaves just added). The Full Binary Tree
Theorem tells us that the number of leaves in a full binary tree is one more than the
number of internal nodes. Thus, the number of new leaves that were added to create
T′ is one more than the number of nodes in T. Each leaf node in T′ corresponds to
an empty subtree in T. Thus, the number of empty subtrees in T is one more than
the number of nodes in T. 2

Proof 2: By definition, every node in binary tree T has two children, for a total of
2n children in a tree of n nodes. Every node except the root node has one parent,
for a total of n− 1 nodes with parents. In other words, there are n− 1 non-empty
children. Because the total number of children is 2n, the remaining n+ 1 children
must be empty. 2

5.1.2 A Binary Tree Node ADT

Just as we developed a generic list ADT on which to build specialized list im-
plementations, we would like to define a generic binary tree ADT based on those
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/** ADT for binary tree nodes */
public interface BinNode<E> {

/** Return and set the element value */
public E element();
public void setElement(E v);

/** Return the left child */
public BinNode<E> left();

/** Return the right child */
public BinNode<E> right();

/** Return true if this is a leaf node */
public boolean isLeaf();

}
Figure 5.5 A binary tree node ADT.

aspects of binary trees that are relevent to all applications. For example, we must be
able to initialize a binary tree, and we might wish to determine if the tree is empty.
Some activities might be unique to the application. For example, we might wish to
combine two binary trees by making their roots be the children of a new root node.
Other activities are centered around the nodes. For example, we might need access
to the left or right child of a node, or to the node’s data value.

Clearly there are activities that relate to nodes (e.g., reach a node’s child or
get a node’s value), and activities that relate to trees (e.g., tree initialization). This
indicates that nodes and trees should be implemented as separate classes. For now,
we concentrate on the class to implement binary tree nodes. This class will be used
by some of the binary tree structures presented later.

Figure 5.5 shows an interface for binary tree nodes, called BinNode. Class
BinNode is a generic with parameter E, which is the type for the data record
stored in a node. Member functions are provided that set or return the element
value, return a reference to the left child, return a reference to the right child, or
indicate whether the node is a leaf.

5.2 Binary Tree Traversals

Often we wish to process a binary tree by “visiting” each of its nodes, each time
performing a specific action such as printing the contents of the node. Any process
for visiting all of the nodes in some order is called a traversal. Any traversal that
lists every node in the tree exactly once is called an enumeration of the tree’s
nodes. Some applications do not require that the nodes be visited in any particular
order as long as each node is visited precisely once. For other applications, nodes
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must be visited in an order that preserves some relationship. For example, we might
wish to make sure that we visit any given node before we visit its children. This is
called a preorder traversal.

Example 5.1 The preorder enumeration for the tree of Figure 5.1 is

ABDCEGFHI.
The first node printed is the root. Then all nodes of the left subtree are

printed (in preorder) before any node of the right subtree.

Alternatively, we might wish to visit each node only after we visit its children
(and their subtrees). For example, this would be necessary if we wish to return
all nodes in the tree to free store. We would like to delete the children of a node
before deleting the node itself. But to do that requires that the children’s children
be deleted first, and so on. This is called a postorder traversal.

Example 5.2 The postorder enumeration for the binary tree of Figure 5.1
is

DBGEHIFCA.

An inorder traversal first visits the left child (including its entire subtree), then
visits the node, and finally visits the right child (including its entire subtree). The
binary search tree of Section 5.4 makes use of this traversal.

Example 5.3 The inorder enumeration for the binary tree of Figure 5.1 is

BDAGECHFI.

A traversal routine is naturally written as a recursive function. Its input parame-
ter is a pointer to a node which we will call root because each node can be viewed
as the root of a some subtree. The initial call to the traversal function passes in a
pointer to the root node of the tree. The traversal function visits root and its chil-
dren (if any) in the desired order. For example, a preorder traversal specifies that
root be visited before its children. This can easily be implemented as follows.

void preorder(BinNode rt) // rt is the root of the subtree
{

if (rt == null) return; // Empty subtree
visit(rt);
preorder(rt.left());
preorder(rt.right());

}
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Function preorder first checks that the tree is not empty (if it is, then the traversal
is done and preorder simply returns). Otherwise, preorder makes a call to
visit, which processes the root node (i.e., prints the value or performs some
computation as required by the application). Function preorder is then called
recursively on the left subtree, which will visit all nodes in that subtree. Finally,
preorder is called on the right subtree, visiting all remaining nodes in the tree.
Postorder and inorder traversals are similar. They simply change the order in which
the node and its children are visited, as appropriate.

An important design decision regarding the implementation of any recursive
function on trees is when to check for an empty subtree. Function preorder first
checks to see if the value for root is null. If not, it will recursively call itself on
the left and right children of root. In other words, preorder makes no attempt
to avoid calling itself on an empty child. Some programmers attempt an alternate
design in which the left and right pointers of the current node are checked so that
the recursive call is made only on non-empty children. Such a design typically
looks as follows:

void preorder2(BinNode rt)
{

visit(rt);
if (rt.left() != null) preorder(rt.left());
if (rt.right() != null) preorder(rt.right());

}

At first it might appear that preorder2 is more efficient than preorder,
because it makes only half as many recursive calls. (Why?) On the other hand,
preorder2 must access the left and right child pointers twice as often. The net
result is little or no performance improvement.

In reality, the design of preorder2 is generally inferior to that of preorder
for two reasons. First, while it is not apparent in this simple example, for more
complex traversals it can become awkward to place the check for the null pointer
in the calling code. Even in this simple example we had to write two tests for null,
rather than one in the first design. The second and more important problem with
preorder2 is that it tends to be error prone. While preorder2 insures that no
recursive calls will be made on empty subtrees, it will fail if the initial call passes
in a null pointer. This would occur if the original tree is empty. To avoid the bug,
either preorder2 needs an additional test for a null pointer at the beginning
(making the subsequent tests redundant after all), or the caller of preorder2 has
a hidden obligation to pass in a non-empty tree, which is unreliable design. The net
result is that many programmers forget to test for the possibility that the empty tree
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is being traversed. By using the first design, which explicitly supports processing
of empty subtrees, the problem is avoided.

Another issue to consider when designing a traversal is how to define the visitor
function that is to be executed on every node. One approach is simply to write a
new version of the traversal for each such visitor function as needed. The disad-
vantage to this is that whatever function does the traversal must have access to the
BinNode class. It is probably better design to permit only the tree class to have
access to the BinNode class.

Another approach is for the tree class to supply a generic traversal function
which takes the visitor as a function parameter. This is known as the visitor design
pattern. A major contraint on this approach is that the signature for all visitor
functions, that is, their return type and parameters, must be fixed in advance. Thus,
the designer of the generic traversal function must be able to adequately judge what
parameters and return type will likely be needed by potential visitor functions.

Properly handling information flow between parts of a program can often be
a significant design challenge. This issue tends to be particularly confusing when
dealing with recursive functions such as tree traversals. In general, we can run into
trouble either with passing in the correct information needed by the function to do
its work, or with returning information to the recursive function’s caller. We will
see many examples throughout the book that illustrate methods for passing infor-
mation in and out of recursive functions as they traverse a tree structure. Before
leaving this section, we will study a few simple examples.

Let us first consider the simple case where a computation requires that we com-
municate information back up the tree to the end user.

Example 5.4 We wish to write a function that counts the number of nodes
in a binary tree. The key insight is that the total count for any (non-empty)
subtree is one for the root plus the counts for the left and right subtrees. We
can implement the function as follows.

int count(BinNode rt) {
if (rt == null) return 0; // Nothing to count
return 1 + count(rt.left()) + count(rt.right());

}

Another problem that occurs when recursively processing data collections is
controlling which members of the collection will be visited. For example, some
tree “traversals” might in fact visit only some tree nodes, while avoiding processing
of others. Exercise 5.20 must solve exactly this problem in the context of a binary
search tree. It must visit only those children of a given node that might possibly
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Figure 5.6 To be a binary search tree, the left child of the node with value 40
must have a value between 20 and 40.

fall within a given range of values. Fortunately, it requires only a simple local
calcuation to determine which child(ren) to visit.

A more difficult situation is illustrated by the following problem. Given an
arbitrary binary tree we wish to determine if, for every node A, are all nodes in A’s
left subtree less than the value of A, and are all nodes in A’s right subtree greater
than the value of A? (This happens to be the definition for a binary search tree,
described in Section 5.4.) Unfortunately, to make this decision we need to know
some context that is not available just by looking at the node’s parent or children.
As shown by Figure 5.6, it is not enough to verify that A’s left child has a value
less than that of A, and that A’s right child has a greater value. Nor is it enough to
verify that A has a value consistent with that of its parent. In fact, we need to know
information about what range of values is legal for a given node. That information
might come from any ancestor for the node. Thus, relevent range information must
be passed down the tree. We can implement this function as follows.

boolean checkBST(BSTNode<Integer,Integer> root,
Integer low, Integer high) {

if (root == null) return true; // Empty subtree
Integer rootkey = root.key();
if ((rootkey < low) || (rootkey > high))

return false; // Out of range
if (!checkBST(root.left(), low, rootkey))

return false; // Left side failed
return checkBST(root.right(), rootkey, high);

}

5.3 Binary Tree Node Implementations

In this section we will examine ways to implement binary tree nodes. We begin with
some options for pointer-based binary tree node implementations. Then comes a
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discussion on techniques for determining the space requirements for a given binary
tree node implementation. The section concludes with an introduction to the array-
based implementation for complete binary trees.

5.3.1 Pointer-Based Node Implementations

By definition, all binary tree nodes have two children, though one or both children
can be empty. Binary tree nodes normally contain a value field, with the type of
the field depending on the application. The most common node implementation
includes a value field and pointers to the two children.

Figure 5.7 shows a simple implementation for the BinNode abstract class,
which we will name BSTNode. Class BSTNode includes a data member of type
element, (which is the second generic parameter) for the element type. To sup-
port search structures such as the Binary Search Tree, an additional field is included,
with corresponding access methods, store a key value (whose purpose is explained
in Section 4.4). Its type is determined by the first generic parameter, named K. Ev-
ery BSTNode object also has two pointers, one to its left child and another to its
right child. Figure 5.8 shows an illustration of the BSTNode implementation.

Some programmers find it convenient to add a pointer to the node’s parent,
allowing easy upward movement in the tree. Using a parent pointer is somewhat
analogous to adding a link to the previous node in a doubly linked list. In practice,
the parent pointer is almost always unnecessary and adds to the space overhead for
the tree implementation. It is not just a problem that parent pointers take space.
More importantly, many uses of the parent pointer are driven by improper under-
standing of recursion and so indicate poor programming. If you are inclined toward
using a parent pointer, consider if there is a more efficient implementation possible.

An important decision in the design of a pointer-based node implementation
is whether the same class definition will be used for leaves and internal nodes.
Using the same class for both will simplify the implementation, but might be an
inefficient use of space. Some applications require data values only for the leaves.
Other applications require one type of value for the leaves and another for the in-
ternal nodes. Examples include the binary trie of Section 13.1, the PR quadtree of
Section 13.3, the Huffman coding tree of Section 5.6, and the expression tree illus-
trated by Figure 5.9. By definition, only internal nodes have non-empty children.
If we use the same node implementation for both internal and leaf nodes, then both
must store the child pointers. But it seems wasteful to store child pointers in the
leaf nodes. Thus, there are many reasons why it can save space to have separate
implementations for internal and leaf nodes.
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/** Binary tree node implementation: Pointers to children */
class BSTNode<K,E> implements BinNode<E> {

private K key; // Key for this node
private E element; // Element for this node
private BSTNode<K,E> left; // Pointer to left child
private BSTNode<K,E> right; // Pointer to right child

/** Constructors */
public BSTNode() {left = right = null; }
public BSTNode(K k, E val)
{ left = right = null; key = k; element = val; }
public BSTNode(K k, E val, BSTNode<K,E> l, BSTNode<K,E> r)
{ left = l; right = r; key = k; element = val; }

/** Return and set the key value */
public K key() { return key; }
public void setKey(K k) { key = k; }

/** Return and set the element value */
public E element() { return element; }
public void setElement(E v) { element = v; }

/** Return and set the left child */
public BSTNode<K,E> left() { return left; }
public void setLeft(BSTNode<K,E> p) { left = p; }

/** Return and set the right child */
public BSTNode<K,E> right() { return right; }
public void setRight(BSTNode<K,E> p) { right = p; }

/** Return true if this is a leaf node */
public boolean isLeaf()
{ return (left == null) && (right == null); }

}

Figure 5.7 A binary tree node class implementation.

As an example of a tree that stores different information at the leaf and inter-
nal nodes, consider the expression tree illustrated by Figure 5.9. The expression
tree represents an algebraic expression composed of binary operators such as ad-
dition, subtraction, multiplication, and division. Internal nodes store operators,
while the leaves store operands. The tree of Figure 5.9 represents the expression
4x(2x + a) − c. The storage requirements for a leaf in an expression tree are quite
different from those of an internal node. Internal nodes store one of a small set of
operators, so internal nodes could store either a small code identifying the operator
or a single byte for the operator’s character symbol. In contrast, leaves must store
variable names or numbers. Thus, the leaf node value field must be considerably
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Figure 5.8 Illustration of a typical pointer-based binary tree implementation,
where each node stores two child pointers and a value.
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Figure 5.9 An expression tree for 4x(2x+ a)− c.

larger to handle the wider range of possible values. At the same time, leaf nodes
need not store child pointers.

Java allows us to differentiate leaf from internal nodes through the use of class
inheritance. As we have seen with lists and with class BinNode, a base class
provides a general definition for an object, and a subclass modifies a base class to
add more detail. A base class can be declared for nodes in general, with subclasses
defined for the internal and leaf nodes. The base class of Figure 5.10 is named
VarBinNode. It includes a virtual member function named isLeaf, which indi-
cates the node type. Subclasses for the internal and leaf node types each implement
isLeaf. Internal nodes store child pointers of the base class type; they do not dis-
tinguish their children’s actual subclass. Whenever a node is examined, its version
of isLeaf indicates the node’s subclass.
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public interface VarBinNode {
public boolean isLeaf();

}
class VarLeafNode implements VarBinNode { // Leaf node

private String operand; // Operand value

public VarLeafNode(String val) { operand = val; }
public boolean isLeaf() { return true; }
public String value() { return operand; }

};
/** Internal node */
class VarIntlNode implements VarBinNode {

private VarBinNode left; // Left child
private VarBinNode right; // Right child
private Character operator; // Operator value

public VarIntlNode(Character op,
VarBinNode l, VarBinNode r)

{ operator = op; left = l; right = r; }
public boolean isLeaf() { return false; }
public VarBinNode leftchild() { return left; }
public VarBinNode rightchild() { return right; }
public Character value() { return operator; }

}
/** Preorder traversal */
public static void traverse(VarBinNode rt) {

if (rt == null) return; // Nothing to visit
if (rt.isLeaf()) // Process leaf node

Visit.VisitLeafNode(((VarLeafNode)rt).value());
else { // Process internal node

Visit.VisitInternalNode(((VarIntlNode)rt).value());
traverse(((VarIntlNode)rt).leftchild());
traverse(((VarIntlNode)rt).rightchild());

}
}

Figure 5.10 An implementation for separate internal and leaf node representa-
tions using Java class inheritance and virtual functions.
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Figure 5.10 presents a sample node implementation. It includes two classes
derived from class VarBinNode, named LeafNode and IntlNode. Class
IntlNode accesses its children through pointers of type VarBinNode. Function
traverse illustrates the use of these classes. Where traverse calls method
“root.isLeaf(),” Java’s runtime environment determines which subclass this
particular instance of root happens to be and calls that subclass’s version of
isLeaf. Method isLeaf then provides the actual node type to its caller. The
other member functions for the derived subclasses are accessed by type-casting the
base class pointer as appropriate, as shown in function traverse.

There is another approach that we can take to represent separate leaf and inter-
nal nodes, also using a virtual base class and separate node classes for the two types.
This is to implement nodes using the composite design pattern. This approach is
noticeably different from the one of Figure 5.10 in that the node classes themselves
implement the functionality of traverse. Figure 5.11 shows the implementa-
tion. Here, base class VarBinNode declares a member function traverse that
each subclass must implement. Each subclass then implements its own appropriate
behavior for its role in a traversal. The whole traversal process is called by invoking
traverse on the root node, which in turn invokes traverse on its children.

When comparing the implementations of Figures 5.10 and 5.11, each has ad-
vantages and disadvantages. The first does not require that the node classes know
about the traverse function. With this approach, it is easy to add new methods
to the tree class that do other traversals or other operations on nodes of the tree.
However, we see that traverse in Figure 5.10 does need to be familiar with each
node subclass. Adding a new node subclass would therefore require modifications
to the traverse function. In contrast, the approach of Figure 5.11 requires that
any new operation on the tree that requires a traversal also be implemented in the
node subclasses. On the other hand, the approach of Figure 5.11 avoids the need for
the traverse function to know anything about the distinct abilities of the node
subclasses. Those subclasses handle the responsibility of performing a traversal on
themselves. A secondary benefit is that there is no need for traverse to explic-
itly enumerate all of the different node subclasses, directing appropriate action for
each. With only two node classes this is a minor point. But if there were many
such subclasses, this could become a bigger problem. A disadvantage is that the
traversal operation must not be called on a null pointer, because there is no object
to catch the call. This problem could be avoided by using a flyweight to implement
empty nodes.

Typically, the version of Figure 5.10 would be preferred in this example if
traverse is a member function of the tree class, and if the node subclasses are
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public interface VarBinNode {
public boolean isLeaf();
public void traverse();

}
class VarLeafNode implements VarBinNode { // Leaf node

private String operand; // Operand value

public VarLeafNode(String val) { operand = val; }
public boolean isLeaf() { return true; }
public String value() { return operand; }

public void traverse() {
Visit.VisitLeafNode(operand);

}
}
class VarIntlNode implements VarBinNode { // Internal node

private VarBinNode left; // Left child
private VarBinNode right; // Right child
private Character operator; // Operator value

public VarIntlNode(Character op,
VarBinNode l, VarBinNode r)

{ operator = op; left = l; right = r; }
public boolean isLeaf() { return false; }
public VarBinNode leftchild() { return left; }
public VarBinNode rightchild() { return right; }
public Character value() { return operator; }

public void traverse() {
Visit.VisitInternalNode(operator);
if (left != null) left.traverse();
if (right != null) right.traverse();

}
}
/** Preorder traversal */
public static void traverse(VarBinNode rt) {

if (rt != null) rt.traverse();
}

Figure 5.11 A second implementation for separate internal and leaf node repre-
sentations using Java class inheritance and virtual functions using the composite
design pattern. Here, the functionality of traverse is embedded into the node
subclasses.
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hidden from users of that tree class. On the other hand, if the nodes are objects
that have meaning to users of the tree separate from their existence as nodes in the
tree, then the version of Figure 5.11 might be preferred because hiding the internal
behavior of the nodes becomes more important.

5.3.2 Space Requirements

This section presents techniques for calculating the amount of overhead required by
a binary tree implementation. Recall that overhead is the amount of space necessary
to maintain the data structure. In other words, it is any space not used to store
data records. The amount of overhead depends on several factors including which
nodes store data values (all nodes, or just the leaves), whether the leaves store child
pointers, and whether the tree is a full binary tree.

In a simple pointer-based implementation for the binary tree such as that of
Figure 5.7, every node has two pointers to its children (even when the children are
null). This implementation requires total space amounting to n(2P + D) for a
tree of n nodes. Here, P stands for the amount of space required by a pointer, and
D stands for the amount of space required by a data value. The total overhead space
will be 2Pn for the entire tree. Thus, the overhead fraction will be 2P/(2P +D).
The actual value for this expression depends on the relative size of pointers versus
data fields. If we arbitrarily assume that P = D, then a full tree has about two
thirds of its total space taken up in overhead. Worse yet, Theorem 5.2 tells us that
about half of the pointers are “wasted” null values that serve only to indicate tree
structure, but which do not provide access to new data.

If only leaves store data values, then the fraction of total space devoted to over-
head depends on whether the tree is full. If the tree is not full, then conceivably
there might only be one leaf node at the end of a series of internal nodes. Thus,
the overhead can be an arbitrarily high percentage for non-full binary trees. The
overhead fraction drops as the tree becomes closer to full, being lowest when the
tree is truly full. In this case, about one half of the nodes are internal.

Great savings can be had by eliminating the pointers from leaf nodes in full
binary trees. Because about half of the nodes are leaves and half internal nodes,
and because only internal nodes now have overhead, the overhead fraction in this
case will be approximately

n
2 (2P )

n
2 (2P ) +Dn

=
P

P +D
.
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If P = D, the overhead drops to about one half of the total space. However, if only
leaf nodes store useful information, the overhead fraction for this implementation is
actually three quarters of the total space, because half of the “data” space is unused.

If a full binary tree needs to store data only at the leaf nodes, a better implemen-
tation would have the internal nodes store two pointers and no data field while the
leaf nodes store only a data field. This implementation requires 2Pn + D(n + 1)
units of space. If P = D, then the overhead is about 2P/(2P +D) = 2/3. It might
seem counter-intuitive that the overhead ratio has gone up while the total amount
of space has gone down. The reason is because we have changed our definition
of “data” to refer only to what is stored in the leaf nodes, so while the overhead
fraction is higher, it is from a total storage requirement that is lower.

There is one serious flaw with this analysis. When using separate implemen-
tations for internal and leaf nodes, there must be a way to distinguish between
the node types. When separate node types are implemented via Java subclasses,
the runtime environment stores information with each object allowing it to deter-
mine, for example, the correct subclass to use when the isLeaf virtual function is
called. Thus, each node requires additional space. Only one bit is truly necessary
to distinguish the two possibilities. In rare applications where space is a critical
resource, implementors can often find a spare bit within the node’s value field in
which to store the node type indicator. An alternative is to use a spare bit within
a node pointer to indicate node type. For example, this is often possible when the
compiler requires that structures and objects start on word boundaries, leaving the
last bit of a pointer value always zero. Thus, this bit can be used to store the node-
type flag and is reset to zero before the pointer is dereferenced. Another alternative
when the leaf value field is smaller than a pointer is to replace the pointer to a leaf
with that leaf’s value. When space is limited, such techniques can make the differ-
ence between success and failure. In any other situation, such “bit packing” tricks
should be avoided because they are difficult to debug and understand at best, and
are often machine dependent at worst.2

5.3.3 Array Implementation for Complete Binary Trees

The previous section points out that a large fraction of the space in a typical binary
tree node implementation is devoted to structural overhead, not to storing data.

2In the early to mid 1980s, I worked on a Geographic Information System that stored spatial data
in quadtrees (see Section 13.3). At the time space was a critical resource, so we used a bit-packing
approach where we stored the nodetype flag as the last bit in the parent node’s pointer. This worked
perfectly on various 32-bit workstations. Unfortunately, in those days IBM PC-compatibles used
16-bit pointers. We never did figure out how to port our code to the 16-bit machine.



Sec. 5.4 Binary Search Trees 171

This section presents a simple, compact implementation for complete binary trees.
Recall that complete binary trees have all levels except the bottom filled out com-
pletely, and the bottom level has all of its nodes filled in from left to right. Thus,
a complete binary tree of n nodes has only one possible shape. You might think
that a complete binary tree is such an unusual occurrence that there is no reason
to develop a special implementation for it. However, the complete binary tree has
practical uses, the most important being the heap data structure discussed in Sec-
tion 5.5. Heaps are often used to implement priority queues (Section 5.5) and for
external sorting algorithms (Section 8.5.2).

We begin by assigning numbers to the node positions in the complete binary
tree, level by level, from left to right as shown in Figure 5.12(a). An array can
store the tree’s data values efficiently, placing each data value in the array position
corresponding to that node’s position within the tree. Figure 5.12(b) lists the array
indices for the children, parent, and siblings of each node in Figure 5.12(a). From
Figure 5.12(b), you should see a pattern regarding the positions of a node’s relatives
within the array. Simple formulae can be derived for calculating the array index for
each relative of a node r from r’s index. No explicit pointers are necessary to
reach a node’s left or right child. This means there is no overhead to the array
implementation if the array is selected to be of size n for a tree of n nodes.

The formulae for calculating the array indices of the various relatives of a node
are as follows. The total number of nodes in the tree is n. The index of the node in
question is r, which must fall in the range 0 to n− 1.

• Parent(r) = b(r − 1)/2c if r 6= 0.
• Left child(r) = 2r + 1 if 2r + 1 < n.
• Right child(r) = 2r + 2 if 2r + 2 < n.
• Left sibling(r) = r − 1 if r is even.
• Right sibling(r) = r + 1 if r is odd and r + 1 < n.

5.4 Binary Search Trees

Section 4.4 presented the dictionary ADT, along with dictionary implementations
based on sorted and unsorted lists. When implementing the dictionary with an
unsorted list, inserting a new record into the dictionary can be performed quickly by
putting it at the end of the list. However, searching an unsorted list for a particular
record requires Θ(n) time in the average case. For a large database, this is probably
much too slow. Alternatively, the records can be stored in a sorted list. If the list
is implemented using a linked list, then no speedup to the search operation will
result from storing the records in sorted order. On the other hand, if we use a sorted
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5 6

8 9 10 117

(a)

4

0

1

3

2

Position 0 1 2 3 4 5 6 7 8 9 10 11
Parent – 0 0 1 1 2 2 3 3 4 4 5

Left Child 1 3 5 7 9 11 – – – – – –
Right Child 2 4 6 8 10 – – – – – – –
Left Sibling – – 1 – 3 – 5 – 7 – 9 –

Right Sibling – 2 – 4 – 6 – 8 – 10 – –

(b)

Figure 5.12 A complete binary tree and its array implementation. (a) The com-
plete binary tree with twelve nodes. Each node has been labeled with its position
in the tree. (b) The positions for the relatives of each node. A dash indicates that
the relative does not exist.

array-based list to implement the dictionary, then binary search can be used to find
a record in only Θ(log n) time. However, insertion will now require Θ(n) time on
average because, once the proper location for the new record in the sorted list has
been found, many records might be shifted to make room for the new record.

Is there some way to organize a collection of records so that inserting records
and searching for records can both be done quickly? This section presents the
binary search tree (BST), which allows an improved solution to this problem.

A BST is a binary tree that conforms to the following condition, known as
the Binary Search Tree Property: All nodes stored in the left subtree of a node
whose key value is K have key values less than K. All nodes stored in the right
subtree of a node whose key value is K have key values greater than or equal to K.
Figure 5.13 shows two BSTs for a collection of values. One consequence of the
Binary Search Tree Property is that if the BST nodes are printed using an inorder
traversal (see Section 5.2), the resulting enumeration will be in sorted order from
lowest to highest.
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Figure 5.13 Two Binary Search Trees for a collection of values. Tree (a) results
if values are inserted in the order 37, 24, 42, 7, 2, 40, 42, 32, 120. Tree (b) results
if the same values are inserted in the order 120, 42, 42, 7, 2, 32, 37, 24, 40.

Figure 5.14 shows a class declaration for the BST that implements the dictio-
nary ADT. The public member functions include those required by the dictionary
ADT, along with a constructor and destructor.

To find a record with key value K in a BST, begin at the root. If the root stores
a record with key value K, then the search is over. If not, then we must search
deeper in the tree. What makes the BST efficient during search is that we need
search only one of the node’s two subtrees. If K is less than the root node’s key
value, we search only the left subtree. If K is greater than the root node’s key
value, we search only the right subtree. This process continues until a record with
key value K is found, or we reach a leaf node. If we reach a leaf node without
encountering K, then no record exists in the BST whose key value is K.

Example 5.5 Consider searching for the node with key value 32 in the
tree of Figure 5.13(a). Because 32 is less than the root value of 37, the
search proceeds to the left subtree. Because 32 is greater than 24, we search
in 24’s right subtree. At this point the node containing 32 is found. If
the search value were 35, the same path would be followed to the node
containing 32. Because this node has no children, we know that 35 is not
in the BST.

Notice that in Figure 5.14, public member function find calls a private mem-
ber function named findhelp. Method find takes the search key as an explicit
parameter and its BST as an implicit parameter, along with space to place a copy of
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import java.lang.Comparable;

/** Binary Search Tree implementation for Dictionary ADT */
class BST<K extends Comparable<? super K>, E>

implements Dictionary<K, E> {
private BSTNode<K,E> root; // Root of the BST
int nodecount; // Number of nodes in the BST

/** Constructor */
BST() { root = null; nodecount = 0; }

/** Reinitialize tree */
public void clear() { root = null; nodecount = 0; }

/** Insert a record into the tree.
@param k Key value of the record.
@param e The record to insert. */

public void insert(K k, E e) {
root = inserthelp(root, k, e);
nodecount++;

}

/** Remove a record from the tree.
@param k Key value of record to remove.
@return Record removed, or null if there is none. */

public E remove(K k) {
E temp = findhelp(root, k); // First find it
if (temp != null) {

root = removehelp(root, k); // Now remove it
nodecount--;

}
return temp;

}
Figure 5.14 Class declaration for the binary search tree.

the record if it is found. However, the find operation is most easily implemented as
a recursive function whose parameters are the root of a BST subtree, the search key,
and space for the element once it is found. Member findhelp is of the desired
form for this recursive subroutine and is implemented as follows:

private E findhelp(BSTNode<K,E> rt, K k) {
if (rt == null) return null;
if (rt.key().compareTo(k) > 0)

return findhelp(rt.left(), k);
else if (rt.key().compareTo(k) == 0) return rt.element();
else return findhelp(rt.right(), k);

}
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/** Remove and return the root node from the dictionary.
@return The record removed, null if tree is empty. */

public E removeAny() {
if (root != null) {

E temp = root.element();
root = removehelp(root, root.key());
nodecount--;
return temp;

}
else return null;

}

/** @return Record with key value k, null if none exist.
@param k The key value to find. */

public E find(K k) { return findhelp(root, k); }

/** @return The number of records in the dictionary. */
public int size() { return nodecount; }

}
Figure 5.14 (continued)

Once the desired record is found, it is passed up the chain of recursive calls to
findhelp in the third parameter, “it.” The return value for the function (true
or false, depending on whether a suitable element has been found) is also simply
passed back up the chain of recursive calls.

Inserting a record with key valueK requires that we first find where that record
would have been if it were in the tree. This takes us to either a leaf node, or to an
internal node with no child in the appropriate direction.3 Call this node R ′. We then
add a new node containing the new record as a child of R ′. Figure 5.15 illustrates
this operation. The value 35 is added as the right child of the node with value 32.
Here is the implementation for inserthelp:

private BSTNode<K,E> inserthelp(BSTNode<K,E> rt, K k, E e) {
if (rt == null) return new BSTNode<K,E>(k, e);
if (rt.key().compareTo(k) > 0)

rt.setLeft(inserthelp(rt.left(), k, e));
else

rt.setRight(inserthelp(rt.right(), k, e));
return rt;

}

3This assumes that no node has a key value equal to the one being inserted. If we find a node that
duplicates the key value to be inserted, we have two options. If the application does not allow nodes
with equal keys, then this insertion should be treated as an error (or ignored). If duplicate keys are
allowed, our convention will be to insert the duplicate in the right subtree.
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Figure 5.15 An example of BST insertion. A record with value 35 is inserted
into the BST of Figure 5.13(a). The node with value 32 becomes the parent of the
new node containing 35.

You should pay careful attention to the implementation for inserthelp.
Note that inserthelp returns a pointer to a BSTNode. What is being returned
is a subtree identical to the old subtree, except that it has been modified to contain
the new record being inserted. Each node along a path from the root to the parent
of the new node added to the tree will have its appropriate child pointer assigned
to it. Except for the last node in the path, none of these nodes will actually change
their child’s pointer value. In that sense, many of the assignments seem redundant.
However, the cost of these additional assignments is worth paying to keep the inser-
tion process simple. The alternative is to check if a given assignment is necessary,
which is probably more expensive than the assignment!

The shape of a BST depends on the order in which elements are inserted. A new
element is added to the BST as a new leaf node, potentially increasing the depth of
the tree. Figure 5.13 illustrates two BSTs for a collection of values. It is possible
for the BST containing n nodes to be a chain of nodes with height n. This would
happen if, for example, all elements were inserted in sorted order. In general, it is
preferable for a BST to be as shallow as possible. This keeps the average cost of a
BST operation low.

Removing a node from a BST is a bit trickier than inserting a node, but it is not
complicated if all of the possible cases are considered individually. Before tackling
the general node removal process, let us first discuss how to remove from a given
subtree the node with the smallest key value. This routine will be used later by the
general node removal function. To remove the node with the minimum key value
from a subtree, first find that node by continuously moving down the left link until
there is no further left link to follow. Call this node S. To remove S, simply have
the parent of S change its pointer to point to the right child of S. We know that S
has no left child (because if S did have a left child, S would not be the node with
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Figure 5.16 An example of deleting the node with minimum value. In this tree,
the node with minimum value, 5, is the left child of the root. Thus, the root’s
left pointer is changed to point to 5’s right child.

minimum key value). Thus, changing the pointer as described will maintain a BST,
with S removed. The code for this method, named deletemin, is as follows:

private BSTNode<K,E> deletemin(BSTNode<K,E> rt) {
if (rt.left() == null)

return rt.right();
else {

rt.setLeft(deletemin(rt.left()));
return rt;

}
}

Example 5.6 Figure 5.16 illustrates the deletemin process. Beginning
at the root node with value 10, deletemin follows the left link until there
is no further left link, in this case reaching the node with value 5. The node
with value 10 is changed to point to the right child of the node containing
the minimum value. This is indicated in Figure 5.16 by a dashed line.

A pointer to the node containing the minimum-valued element is stored in pa-
rameter S. The return value of the deletemin method is the subtree of the cur-
rent node with the minimum-valued node in the subtree removed. As with method
inserthelp, each node on the path back to the root has its left child pointer
reassigned to the subtree resulting from its call to the deletemin method.

Removing a node with given key value R from the BST requires that we first
find R and then remove it from the tree. So, the first part of the remove operation
is a search to find R. Once R is found, there are several possibilities. If R has no
children, then R’s parent has its pointer set to null. If R has one child, then R’s
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Figure 5.17 An example of removing the value 37 from the BST. The node
containing this value has two children. We replace value 37 with the least value
from the node’s right subtree, in this case 40.

parent has its pointer set to R’s child (similar to deletemin). The problem comes
if R has two children. One simple approach, though expensive, is to set R’s parent
to point to one of R’s subtrees, and then reinsert the remaining subtree’s nodes one
at a time. A better alternative is to find a value in one of the subtrees that can
replace the value in R.

Thus, the question becomes: Which value can substitute for the one being re-
moved? It cannot be any arbitrary value, because we must preserve the BST prop-
erty without making major changes to the structure of the tree. Which value is
most like the one being removed? The answer is the least key value greater than
(or equal to) the one being removed, or else the greatest key value less than the one
being removed. If either of these values replace the one being removed, then the
BST property is maintained.

Example 5.7 Assume that we wish to remove the value 37 from the BST
of Figure 5.13(a). Instead of removing the root node, we remove the node
with the least value in the right subtree (using the deletemin operation).
This value can then replace the value in the root. In this example we first
remove the node with value 40, because it contains the least value in the
right subtree. We then substitute 40 as the new value for the root node.
Figure 5.17 illustrates this process.

When duplicate node values do not appear in the tree, it makes no difference
whether the replacement is the greatest value from the left subtree or the least value
from the right subtree. If duplicates are stored, then we must select the replacement
from the right subtree. To see why, call the greatest value in the left subtree G.
If multiple nodes in the left subtree have value G, selecting G as the replacement
value for the root of the subtree will result in a tree with equal values to the left of
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/** Remove a node with key value k
@return The tree with the node removed */

private BSTNode<K,E> removehelp(BSTNode<K,E> rt, K k) {
if (rt == null) return null;
if (rt.key().compareTo(k) > 0)

rt.setLeft(removehelp(rt.left(), k));
else if (rt.key().compareTo(k) < 0)

rt.setRight(removehelp(rt.right(), k));
else { // Found it

if (rt.left() == null)
return rt.right();

else if (rt.right() == null)
return rt.left();

else { // Two children
BSTNode<K,E> temp = getmin(rt.right());
rt.setElement(temp.element());
rt.setKey(temp.key());
rt.setRight(deletemin(rt.right()));

}
}
return rt;

}

Figure 5.18 Implementation for the BST removehelp method.

the node now containing G. Precisely this situation occurs if we replace value 120
with the greatest value in the left subtree of Figure 5.13(b). Selecting the least value
from the right subtree does not have a similar problem, because it does not violate
the Binary Search Tree Property if equal values appear in the right subtree.

From the above, we see that if we want to remove the record stored in a node
with two children, then we simply call deletemin on the node’s right subtree
and substitute the record returned for the record being removed. Figure 5.18 shows
is the code for removehelp.

The cost for findhelp and inserthelp is the depth of the node found or
inserted. The cost for removehelp is the depth of the node being removed, or
in the case when this node has two children, the depth of the node with smallest
value in its right subtree. Thus, in the worst case, the cost of any one of these
operations is the depth of the deepest node in the tree. This is why it is desirable
to keep BSTs balanced, that is, with least possible height. If a binary tree is bal-
anced, then the height for a tree of n nodes is approximately log n. However, if the
tree is completely unbalanced, for example in the shape of a linked list, then the
height for a tree of n nodes can be as great as n. Thus, a balanced BST will in the
average case have operations costing Θ(log n), while a badly unbalanced BST can
have operations in the worst case costing Θ(n). Consider the situation where we
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construct a BST of n nodes by inserting the nodes one at a time. If we are fortunate
to have them arrive in an order that results in a balanced tree (a “random” order is
likely to be good enough for this purpose), then each insertion will cost on average
Θ(log n), for a total cost of Θ(n log n). However, if the nodes are inserted in order
of increasing value, then the resulting tree will be a chain of height n. The cost of
insertion in this case will be

∑n
i=1 i, which is Θ(n2).

Traversing a BST costs Θ(n) regardless of the shape of the tree. Each node
is visited exactly once, and each child pointer is followed exactly once. Below is
an example traversal, named printhelp. It performs an inorder traversal on the
BST to print the node values in ascending order.

private void printhelp(BSTNode<K,E> rt) {
if (rt == null) return;
printhelp(rt.left());
printVisit(rt.element());
printhelp(rt.right());

}

While the BST is simple to implement and efficient when the tree is balanced,
the possibility of its being unbalanced is a serious liability. There are techniques
for organizing a BST to guarantee good performance. Two examples are the AVL
tree and the splay tree of Section 13.2. Other search trees are guaranteed to remain
balanced, such as the 2-3 tree of Section 10.4.

5.5 Heaps and Priority Queues

There are many situations, both in real life and in computing applications, where
we wish to choose the next “most important” from a collection of people, tasks,
or objects. For example, doctors in a hospital emergency room often choose to
see next the “most critical” patient rather than the one who arrived first. When
scheduling programs for execution in a multitasking operating system, at any given
moment there might be several programs (usually called jobs) ready to run. The
next job selected is the one with the highest priority. Priority is indicated by a
particular value associated with the job (and might change while the job remains in
the wait list).

When a collection of objects is organized by importance or priority, we call
this a priority queue. A normal queue data structure will not implement a prior-
ity queue efficiently because search for the element with highest priority will take
Θ(n) time. A list, whether sorted or not, will also require Θ(n) time for either in-
sertion or removal. A BST that organizes records by priority could be used, with the
total of n inserts and n remove operations requiring Θ(n log n) time in the average
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case. However, there is always the possibility that the BST will become unbal-
anced, leading to bad performance. Instead, we would like to find a data structure
that is guaranteed to have good performance for this special application.

This section presents the heap4 data structure. A heap is defined by two prop-
erties. First, it is a complete binary tree, so heaps are nearly always implemented
using the array representation for complete binary trees presented in Section 5.3.3.
Second, the values stored in a heap are partially ordered. This means that there is
a relationship between the value stored at any node and the values of its children.
There are two variants of the heap, depending on the definition of this relationship.

A max-heap has the property that every node stores a value that is greater than
or equal to the value of either of its children. Because the root has a value greater
than or equal to its children, which in turn have values greater than or equal to their
children, the root stores the maximum of all values in the tree.

A min-heap has the property that every node stores a value that is less than
or equal to that of its children. Because the root has a value less than or equal to
its children, which in turn have values less than or equal to their children, the root
stores the minimum of all values in the tree.

Note that there is no necessary relationship between the value of a node and that
of its sibling in either the min-heap or the max-heap. For example, it is possible that
the values for all nodes in the left subtree of the root are greater than the values for
every node of the right subtree. We can contrast BSTs and heaps by the strength of
their ordering relationships. A BST defines a total order on its nodes in that, given
the positions for any two nodes in the tree, the one to the “left” (equivalently, the
one appearing earlier in an inorder traversal) has a smaller key value than the one
to the “right.” In contrast, a heap implements a partial order. Given their positions,
we can determine the relative order for the key values of two nodes in the heap only
if one is a descendent of the other.

Min-heaps and max-heaps both have their uses. For example, the Heapsort
of Section 7.6 uses the max-heap, while the Replacement Selection algorithm of
Section 8.5.2 uses a min-heap. The examples in the rest of this section will use a
max-heap.

Be careful not to confuse the logical representation of a heap with its physical
implementation by means of the array-based complete binary tree. The two are not
synonymous because the logical view of the heap is actually a tree structure, while
the typical physical implementation uses an array.

Figure 5.19 shows an implementation for heaps. The class is a generic with one
type parameter. E defines the type for the data elements stored in the heap.

4The term “heap” is also sometimes used to refer to a memory pool. See Section 12.3.
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import java.lang.Comparable;

/** Max-heap implementation */
public class MaxHeap<E extends Comparable<? super E>> {

private E[] Heap; // Pointer to the heap array
private int size; // Maximum size of the heap
private int n; // Number of things in heap

public MaxHeap(E[] h, int num, int max)
{ Heap = h; n = num; size = max; buildheap(); }

/** Return current size of the heap */
public int heapsize() { return n; }

/** Is pos a leaf position? */
public boolean isLeaf(int pos)
{ return (pos >= n/2) && (pos < n); }

/** Return position for left child of pos */
public int leftchild(int pos) {

assert pos < n/2 : "Position has no left child";
return 2*pos + 1;

}

/** Return position for right child of pos */
public int rightchild(int pos) {

assert pos < (n-1)/2 : "Position has no right child";
return 2*pos + 2;

}

/** Return position for parent */
public int parent(int pos) {

assert pos > 0 : "Position has no parent";
return (pos-1)/2;

}

/** Heapify contents of Heap */
public void buildheap()

{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

/** Insert into heap */
public void insert(E val) {

assert n < size : "Heap is full";
int curr = n++;
Heap[curr] = val; // Start at end of heap
// Now sift up until curr’s parent’s key > curr’s key
while ((curr != 0) &&

(Heap[curr].compareTo(Heap[parent(curr)]) > 0)) {
DSutil.swap(Heap, curr, parent(curr));
curr = parent(curr);

}
}

Figure 5.19 Max-heap implementation.
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/** Put element in its correct place */
private void siftdown(int pos) {

assert (pos >= 0) && (pos < n) : "Illegal heap position";
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) && (Heap[j].compareTo(Heap[j+1]) < 0))

j++; // j is now index of child with greater value
if (Heap[pos].compareTo(Heap[j]) >= 0)

return;
DSutil.swap(Heap, pos, j);
pos = j; // Move down

}
}

public E removemax() { // Remove maximum value
assert n > 0 : "Removing from empty heap";
DSutil.swap(Heap, 0, --n); // Swap maximum with last value
if (n != 0) // Not on last element

siftdown(0); // Put new heap root val in correct place
return Heap[n];

}

/** Remove element at specified position */
public E remove(int pos) {

assert (pos >= 0) && (pos < n) : "Illegal heap position";
DSutil.swap(Heap, pos, --n); // Swap with last value
while (Heap[pos].compareTo(Heap[parent(pos)]) > 0) {

DSutil.swap(Heap, pos, parent(pos));
pos = parent(pos);

}
if (n != 0) siftdown(pos); // Push down
return Heap[n];

}
}

Figure 5.19 (continued)

This class definition makes two concessions to the fact that an array-based im-
plementation is used. First, heap nodes are indicated by their logical position within
the heap rather than by a pointer to the node. In practice, the logical heap position
corresponds to the identically numbered physical position in the array. Second, the
constructor takes as input a pointer to the array to be used. This approach provides
the greatest flexibility for using the heap because all data values can be loaded into
the array directly by the client. The advantage of this comes during the heap con-
struction phase, as explained below. The constructor also takes an integer parame-
ter indicating the initial size of the heap (based on the number of elements initially
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loaded into the array) and a second integer parameter indicating the maximum size
allowed for the heap (the size of the array).

Method heapsize returns the current size of the heap. H.isLeaf(pos)
will return true if position pos is a leaf in heap H, and false otherwise. Mem-
bers leftchild, rightchild, and parent return the position (actually, the
array index) for the left child, right child, and parent of the position passed, respec-
tively.

One way to build a heap is to insert the elements one at a time. Method insert
will insert a new element V into the heap. You might expect the heap insertion pro-
cess to be similar to the insert function for a BST, starting at the root and working
down through the heap. However, this approach is not likely to work because the
heap must maintain the shape of a complete binary tree. Equivalently, if the heap
takes up the first n positions of its array prior to the call to insert, it must take
up the first n+ 1 positions after. To accomplish this, insert first places V at po-
sition n of the array. Of course, V is unlikely to be in the correct position. To move
V to the right place, it is compared to its parent’s value. If the value of V is less
than or equal to the value of its parent, then it is in the correct place and the insert
routine is finished. If the value of V is greater than that of its parent, then the two
elements swap positions. From here, the process of comparing V to its (current)
parent continues until V reaches its correct position.

Each call to insert takes Θ(log n) time in the worst case, because the value
being inserted can move at most the distance from the bottom of the tree to the top
of the tree. Thus, the time to insert n values into the heap, if we insert them one at
a time, will be Θ(n log n) in the worst case.

If all n values are available at the beginning of the building process, we can
build the heap faster than just inserting the values into the heap one by one. Con-
sider Figure 5.20(a), which shows one series of exchanges that will result in a heap.
Note that this figure shows the input in its logical form as a complete binary tree,
but you should realize that these values are physically stored in an array. All ex-
changes are between a node and one of its children. The heap is formed as a result
of this exchange process. The array for the right-hand tree of Figure 5.20(a) would
appear as follows:

7 4 6 1 2 3 5

Figure 5.20(b) shows an alternate series of exchanges that also forms a heap,
but much more efficiently. From this example, it is clear that the heap for any given
set of numbers is not unique, and we see that some rearrangements of the input
values require fewer exchanges than others to build the heap. So, how do we pick
the best rearrangement?
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Figure 5.20 Two series of exchanges to build a max-heap. (a) This heap is built
by a series of nine exchanges in the order (4-2), (4-1), (2-1), (5-2), (5-4), (6-3),
(6-5), (7-5), (7-6). (b) This heap is built by a series of four exchanges in the order
(5-2), (7-3), (7-1), (6-1).

One good algorithm stems from induction. Suppose that the left and right sub-
trees of the root are already heaps, and R is the name of the element at the root.
This situation is illustrated by Figure 5.21. In this case there are two possibilities.
(1) R has a value greater than or equal to its two children. In this case, construction
is complete. (2) R has a value less than one or both of its children. In this case,
R should be exchanged with the child that has greater value. The result will be a
heap, except that R might still be less than one or both of its (new) children. In this
case, we simply continue the process of “pushing down” R until it reaches a level
where it is greater than its children, or is a leaf node. This process is implemented
by the private method siftdown of the heap class. The siftdown operation is
illustrated by Figure 5.22.

This approach assumes that the subtrees are already heaps, suggesting that a
complete algorithm can be obtained by visiting the nodes in some order such that
the children of a node are visited before the node itself. One simple way to do this
is simply to work from the high index of the array to the low index. Actually, the
build process need not visit the leaf nodes (they can never move down because they
are already at the bottom), so the building algorithm can start in the middle of the
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R

H1 H2

Figure 5.21 Final stage in the heap-building algorithm. Both subtrees of node R
are heaps. All that remains is to push R down to its proper level in the heap.

(a) (b) (c)
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Figure 5.22 The siftdown operation. The subtrees of the root are assumed to
be heaps. (a) The partially completed heap. (b) Values 1 and 7 are swapped.
(c) Values 1 and 6 are swapped to form the final heap.

array, with the first internal node. The exchanges shown in Figure 5.20(b) result
from this process. Method buildHeap implements the building algorithm.

What is the cost of buildHeap? Clearly it is the sum of the costs for the calls
to siftdown. Each siftdown operation can cost at most the number of levels it
takes for the node being sifted to reach the bottom of the tree. In any complete tree,
approximately half of the nodes are leaves and so cannot be moved downward at
all. One quarter of the nodes are one level above the leaves, and so their elements
can move down at most one level. At each step up the tree we get half the number of
nodes as were at the previous level, and an additional height of one. The maximum
sum of total distances that elements can go is therefore

logn∑
i=1

(i− 1)
n

2i
=
n

2

logn∑
i=1

i− 1
2i−1

.

From Equation 2.9 we know that this summation has a closed-form solution of
approximately 2, so this algorithm takes Θ(n) time in the worst case. This is far
better than building the heap one element at a time, which would cost Θ(n log n)
in the worst case. It is also faster than the Θ(n log n) average-case time and Θ(n2)
worst-case time required to build the BST.
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Removing the maximum (root) value from a heap containing n elements re-
quires that we maintain the complete binary tree shape, and that the remaining
n− 1 node values conform to the heap property. We can maintain the proper shape
by moving the element in the last position in the heap (the current last element in
the array) to the root position. We now consider the heap to be one element smaller.
Unfortunately, the new root value is probably not the maximum value in the new
heap. This problem is easily solved by using siftdown to reorder the heap. Be-
cause the heap is log n levels deep, the cost of deleting the maximum element is
Θ(log n) in the average and worst cases.

The heap is a natural implementation for the priority queues discussed at the
beginning of this section. Jobs can be added to the heap (using their priority value
as the ordering key) when needed. Method removemax can be called whenever a
new job is to be executed.

Some applications of priority queues require the ability to change the priority of
an object already stored in the queue. This might require that the object’s position
in the heap representation be updated. Unfortunately, a max-heap is not efficient
when searching for an arbitrary value; it is only good for finding the maximum
value. However, if we already know the index for an object within the heap, it is
a simple matter to update its priority (including changing its position to maintain
the heap property) or remove it. The remove method takes as input the position
of the node to be removed from the heap. A typical implementation for priority
queues requiring updating of priorities will need to use an auxiliary data structure
that supports efficient search for objects (such as a BST). Records in the auxiliary
data structure will store the object’s heap index, so that the object can be deleted
from the heap and reinserted with its new priority (see Project 5.5). Sections 11.4.1
and 11.5.1 present applications for a priority queue with priority updating.

5.6 Huffman Coding Trees

The space/time tradeoff principle from Section 3.9 suggests that one can often gain
an improvement in space requirements in exchange for a penalty in running time.
There are many situations where this is a desirable tradeoff. A typical example is
storing files on disk. If the files are not actively used, the owner might wish to
compress them to save space. Later, they can be uncompressed for use, which costs
some time, but only once.

We often represent a set of items in a computer program by assigning a unique
code to each item. For example, the standard ASCII coding scheme assigns a
unique eight-bit value to each character. It takes a certain minimum number of
bits to provide unique codes for each character. For example, it takes dlog 128e or
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Letter Frequency Letter Frequency
A 77 N 67
B 17 O 67
C 32 P 20
D 42 Q 5
E 120 R 59
F 24 S 67
G 17 T 85
H 50 U 37
I 76 V 12
J 4 W 22
K 7 X 4
L 42 Y 22
M 24 Z 2

Figure 5.23 Relative frequencies for the 26 letters of the alphabet as they ap-
pear in a selected set of English documents. “Frequency” represents the expected
frequency of occurrence per 1000 letters, ignoring case.

seven bits to provide the 128 unique codes needed to represent the 128 symbols of
the ASCII character set.5

The requirement for dlog ne bits to represent n unique code values assumes that
all codes will be the same length, as are ASCII codes. This is called a fixed-length
coding scheme. If all characters were used equally often, then a fixed-length coding
scheme is the most space efficient method. However, you are probably aware that
not all characters are used equally often.

Figure 5.23 shows the relative frequencies of the letters of the alphabet. From
this table we can see that the letter ‘E’ appears about 60 times more often than the
letter ‘Z.’ In normal ASCII, the words “DEED” and “MUCK” require the same
amount of space (four bytes). It would seem that words such as “DEED,” which
are composed of relatively common letters, should be storable in less space than
words such as “MUCK,” which are composed of relatively uncommon letters.

If some characters are used more frequently than others, is it possible to take
advantage of this fact and somehow assign them shorter codes? The price could
be that other characters require longer codes, but this might be worthwhile if such
characters appear rarely enough. This concept is at the heart of file compression

5The ASCII standard is eight bits, not seven, even though there are only 128 characters repre-
sented. The eighth bit is used either to check for transmission errors, or to support extended ASCII
codes with an additional 128 characters.
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Letter C D E K L M U Z
Frequency 32 42 120 7 42 24 37 2

Figure 5.24 The relative frequencies for eight selected letters.

techniques in common use today. The next section presents one such approach to
assigning variable-length codes, called Huffman coding. While it is not commonly
used in its simplest form for file compression (there are better methods), Huffman
coding gives the flavor of such coding schemes.

5.6.1 Building Huffman Coding Trees

Huffman coding assigns codes to characters such that the length of the code de-
pends on the relative frequency or weight of the corresponding character. Thus, it
is a variable-length code. If the estimated frequencies for letters match the actual
frequency found in an encoded message, then the length of that message will typi-
cally be less than if a fixed-length code had been used. The Huffman code for each
letter is derived from a full binary tree called the Huffman coding tree, or simply
the Huffman tree. Each leaf of the Huffman tree corresponds to a letter, and we
define the weight of the leaf node to be the weight (frequency) of its associated
letter. The goal is to build a tree with the minimum external path weight. Define
the weighted path length of a leaf to be its weight times its depth. The binary tree
with minimum external path weight is the one with the minimum sum of weighted
path lengths for the given set of leaves. A letter with high weight should have low
depth, so that it will count the least against the total path length. As a result, another
letter might be pushed deeper in the tree if it has less weight.

The process of building the Huffman tree for n letters is quite simple. First,
create a collection of n initial Huffman trees, each of which is a single leaf node
containing one of the letters. Put the n partial trees onto a min-heap (a priority
queue) organized by weight (frequency). Next, remove the first two trees (the ones
with lowest weight) from the heap. Join these two trees together to create a new
tree whose root has the two trees as children, and whose weight is the sum of
the weights of the two trees. Put this new tree back on the heap. This process is
repeated until all of the partial Huffman trees have been combined into one.

Example 5.8 Figure 5.25 illustrates part of the Huffman tree construction
process for the eight letters of Figure 5.24. Ranking D and L arbitrarily by
alphabetical order, the letters are ordered by frequency as
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Figure 5.25 The first five steps of the building process for a sample Huffman
tree.
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Figure 5.26 A Huffman tree for the letters of Figure 5.24.

Letter Z K M C U D L E
Frequency 2 7 24 32 37 42 42 120

Because the first two letters on the list are Z and K, they are selected to
be the first trees joined together. They become the children of a root node
with weight 9. Thus, a tree whose root has weight 9 is placed back on the
list, where it takes up the first position. The next step is to take values 9
and 24 off the heap (corresponding to the partial tree with two leaf nodes
built in the last step, and the partial tree storing the letter M, respectively)
and join them together. The resulting root node has weight 33, and so this
tree is placed back into the heap. Its priority will be between the trees with
values 32 (for letter C) and 37 (for letter U). This process continues until a
tree whose root has weight 306 is built. This tree is shown in Figure 5.26.

Figure 5.27 shows an implementation for Huffman tree nodes. This implemen-
tation is similar to the VarBinNode implementation of Figure 5.10. There is an
abstract base class, named HuffNode, and two subclasses, named LeafNode
and IntlNode. This implementation reflects the fact that leaf and internal nodes
contain distinctly different information.

Figure 5.28 shows the implementation for the Huffman tree. Nodes of the tree
store key-value pairs (see Figure 4.30), where the key is the weight and the value is
the character. Figure 5.29 shows the Java code for the tree-building process.
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/** Binary tree node implementation with just an element
field (no key) and pointers to children */

class HuffNode<E> implements BinNode<E> {
private E element; // Element for this node
private HuffNode<E> left; // Pointer to left child
private HuffNode<E> right; // Pointer to right child

/** Constructors */
public HuffNode() {left = right = null; }
public HuffNode(E val)
{ left = right = null; element = val; }
public HuffNode(E val, HuffNode<E> l, HuffNode<E> r)
{ left = l; right = r; element = val; }

/** Return and set the element value */
public E element() { return element; }
public E setElement(E v) { return element = v; }

/** Return and set the left child */
public HuffNode<E> left() { return left; }
public HuffNode<E> setLeft(HuffNode<E> p)

{ return left = p; }

/** Return and set the right child */
public HuffNode<E> right() { return right; }
public HuffNode<E> setRight(HuffNode<E> p)

{ return right = p; }

/** Return true if this is a leaf node */
public boolean isLeaf()
{ return (left == null) && (right == null); }

}

Figure 5.27 Implementation for Huffman tree nodes. Internal nodes and leaf
nodes are represented by separate classes, each derived from an abstract base class.

Huffman tree building is an example of a greedy algorithm. At each step, the
algorithm makes a “greedy” decision to merge the two subtrees with least weight.
This makes the algorithm simple, but does it give the desired result? This sec-
tion concludes with a proof that the Huffman tree indeed gives the most efficient
arrangement for the set of letters.

The proof requires the following lemma.

Lemma 5.1 For any Huffman tree built by function buildHuff containing at
least two letters, the two letters with least frequency are stored in siblings nodes
whose depth is at least as deep as any other leaf nodes in the tree.
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class HuffTree { // A Huffman coding tree
private HuffNode<LettFreq> root; // Root of the tree

public HuffTree(LettFreq val)
{ root = new HuffNode<LettFreq>(val); }

public HuffTree(LettFreq val, HuffTree l, HuffTree r) {
root = new HuffNode<LettFreq>(val, l.root(), r.root());

}
public HuffNode<LettFreq> root() { return root; }
public int weight() // Weight of tree is weight of root

{ return root.element().weight(); }
}

Figure 5.28 Class declarations for the Huffman tree.

Proof: Call the two letters with least frequency l1 and l2. They must be siblings
because buildHuff selects them in the first step of the construction process.
Assume that l1 and l2 are not the deepest nodes in the tree. In this case, the Huffman
tree must either look as shown in Figure 5.30, or in some sense be symmetrical
to this. For this situation to occur, the parent of l1 and l2, labeled V , must have
greater weight than the node labeled X. Otherwise, function buildHuff would
have selected node V in place of node X as the child of node U. However, this is
impossible because l1 and l2 are the letters with least frequency. 2

Theorem 5.3 Function buildHuff builds the Huffman tree with the minimum
external path weight for the given set of letters.

Proof: The proof is by induction on n, the number of letters.

• Base Case: For n = 2, the Huffman tree must have the minimum external
path weight because there are only two possible trees, each with identical
weighted path lengths for the two leaves.
• Induction Hypothesis: Assume that any tree created by buildHuff that

contains n− 1 leaves has minimum external path length.
• Induction Step: Given a Huffman tree T built by buildHuff with n

leaves, n ≥ 2, suppose that w1 ≤ w2 ≤ · · · ≤ wn where w1 to wn are
the weights of the letters. Call V the parent of the letters with frequencies w1

and w2. From the lemma, we know that the leaf nodes containing the letters
with frequencies w1 and w2 are as deep as any nodes in T. If any other leaf
nodes in the tree were deeper, we could reduce their weighted path length by
swapping them with w1 or w2. But the lemma tells us that no such deeper
nodes exist. Call T′ the Huffman tree that is identical to T except that node
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// Build a Huffman tree from list hufflist
static HuffTree buildTree(List<HuffTree> hufflist) {

HuffTree tmp1, tmp2, tmp3;
LettFreq tmpnode;

for(hufflist.moveToPos(1); hufflist.length() > 1;
hufflist.moveToPos(1)) {

// While at least two items left
hufflist.moveToStart();
tmp1 = hufflist.remove();
tmp2 = hufflist.remove();
tmpnode = new LettFreq(tmp1.weight() + tmp2.weight());
tmp3 = new HuffTree(tmpnode, tmp1, tmp2);

// return to the list in sorted order
for (hufflist.moveToStart();

hufflist.currPos() < hufflist.length();
hufflist.next())

if (tmp3.weight() <= hufflist.getValue().weight())
{ hufflist.insert(tmp3); break; } // Put in list

if (hufflist.currPos() >= hufflist.length())
hufflist.append(tmp3); // This is heaviest value

}
hufflist.moveToStart(); // This is only tree on list
return hufflist.remove(); // Return the tree

}

Figure 5.29 Implementation for the Huffman tree construction function.
buildHuff takes as input fl, the min-heap of partial Huffman trees, which
initially are single leaf nodes as shown in Step 1 of Figure 5.25. The body of
function buildTree consists mainly of a for loop. On each iteration of the
for loop, the first two partial trees are taken off the heap and placed in variables
temp1 and temp2. A tree is created (temp3) such that the left and right subtrees
are temp1 and temp2, respectively. Finally, temp3 is returned to fl.

l1 X

V

l2

U

Figure 5.30 An impossible Huffman tree, showing the situation where the two
nodes with least weight, l1 and l2, are not the deepest nodes in the tree. Triangles
represent subtrees.
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Letter Freq Code Bits
C 32 1110 4
D 42 101 3
E 120 0 1
K 7 111101 6
L 42 110 3
M 24 11111 5
U 37 100 3
Z 2 111100 6

Figure 5.31 The Huffman codes for the letters of Figure 5.24.

V is replaced with a leaf node V ′ whose weight is w1 +w2. By the induction
hypothesis, T′ has minimum external path length. Returning the children to
V ′ restores tree T, which must also have minimum external path length.

Thus by mathematical induction, function buildHuff creates the Huffman
tree with minimum external path length. 2

5.6.2 Assigning and Using Huffman Codes

Once the Huffman tree has been constructed, it is an easy matter to assign codes
to individual letters. Beginning at the root, we assign either a ‘0’ or a ‘1’ to each
edge in the tree. ‘0’ is assigned to edges connecting a node with its left child, and
‘1’ to edges connecting a node with its right child. This process is illustrated by
Figure 5.26. The Huffman code for a letter is simply a binary number determined
by the path from the root to the leaf corresponding to that letter. Thus, the code
for E is ‘0’ because the path from the root to the leaf node for E takes a single left
branch. The code for K is ‘111101’ because the path to the node for K takes four
right branches, then a left, and finally one last right. Figure 5.31 lists the codes for
all eight letters.

Given codes for the letters, it is a simple matter to use these codes to encode a
text message. We simply replace each letter in the string with its binary code. A
lookup table can be used for this purpose.

Example 5.9 Using the code generated by our example Huffman tree,
the word “DEED” is represented by the bit string “10100101” and the word
“MUCK” is represented by the bit string “111111001110111101.”

Decoding the message is done by looking at the bits in the coded string from
left to right until a letter is decoded. This can be done by using the Huffman tree in
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a reverse process from that used to generate the codes. Decoding a bit string begins
at the root of the tree. We take branches depending on the bit value — left for ‘0’
and right for ‘1’ — until reaching a leaf node. This leaf contains the first character
in the message. We then process the next bit in the code restarting at the root to
begin the next character.

Example 5.10 To decode the bit string “1011001110111101” we begin
at the root of the tree and take a right branch for the first bit which is ‘1.’
Because the next bit is a ‘0’ we take a left branch. We then take another
right branch (for the third bit ‘1’), arriving at the leaf node corresponding
to the letter D. Thus, the first letter of the coded word is D. We then begin
again at the root of the tree to process the fourth bit, which is a ‘1.’ Taking
a right branch, then two left branches (for the next two bits which are ‘0’),
we reach the leaf node corresponding to the letter U. Thus, the second letter
is U. In similar manner we complete the decoding process to find that the
last two letters are C and K, spelling the word “DUCK.”

A set of codes is said to meet the prefix property if no code in the set is the
prefix of another. The prefix property guarantees that there will be no ambiguity in
how a bit string is decoded. In other words, once we reach the last bit of a code
during the decoding process, we know which letter it is the code for. Huffman codes
certainly have the prefix property because any prefix for a code would correspond to
an internal node, while all codes correspond to leaf nodes. For example, the code
for M is ‘11111.’ Taking five right branches in the Huffman tree of Figure 5.26
brings us to the leaf node containing M. We can be sure that no letter can have code
‘111’ because this corresponds to an internal node of the tree, and the tree-building
process places letters only at the leaf nodes.

How efficient is Huffman coding? In theory, it is an optimal coding method
whenever the true frequencies are known, and the frequency of a letter is indepen-
dent of the context of that letter in the message. In practice, the frequencies of
letters do change depending on context. For example, while E is the most com-
monly used letter of the alphabet in English documents, T is more common as the
first letter of a word. This is why most commercial compression utilities do not use
Huffman coding as their primary coding method, but instead use techniques that
take advantage of the context for the letters.

Another factor that affects the compression efficiency of Huffman coding is the
relative frequencies of the letters. Some frequency patterns will save no space as
compared to fixed-length codes; others can result in great compression. In general,
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Huffman coding does better when there is large variation in the frequencies of
letters. In the particular case of the frequencies shown in Figure 5.31, we can
determine the expected savings from Huffman coding if the actual frequencies of a
coded message match the expected frequencies.

Example 5.11 Because the sum of the frequencies in Figure 5.31 is 306
and E has frequency 120, we expect it to appear 120 times in a message
containing 306 letters. An actual message might or might not meet this
expectation. Letters D, L, and U have code lengths of three, and together
are expected to appear 121 times in 306 letters. Letter C has a code length of
four, and is expected to appear 32 times in 306 letters. Letter M has a code
length of five, and is expected to appear 24 times in 306 letters. Finally,
letters K and Z have code lengths of six, and together are expected to appear
only 9 times in 306 letters. The average expected cost per character is
simply the sum of the cost for each character (ci) times the probability of
its occurring (pi), or

c1p1 + c2p2 + · · ·+ cnpn.

This can be reorganized as

c1f1 + c2f2 + · · ·+ cnfn
fT

where fi is the (relative) frequency of letter i and fT is the total for all letter
frequencies. For this set of frequencies, the expected cost per letter is

[(1×120)+(3×121)+(4×32)+(5×24)+(6×9)]/306 = 785/306 ≈ 2.57

A fixed-length code for these eight characters would require log 8 = 3 bits
per letter as opposed to about 2.57 bits per letter for Huffman coding. Thus,
Huffman coding is expected to save about 14% for this set of letters.

Huffman coding for all ASCII symbols should do better than this. The letters of
Figure 5.31 are atypical in that there are too many common letters compared to the
number of rare letters. Huffman coding for all 26 letters would yield an expected
cost of 4.29 bits per letter. The equivalent fixed-length code would require about
five bits. This is somewhat unfair to fixed-length coding because there is actually
room for 32 codes in five bits, but only 26 letters. More generally, Huffman coding
of a typical text file will save around 40% over ASCII coding if we charge ASCII
coding at eight bits per character. Huffman coding for a binary file (such as a
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compiled executable) would have a very different set of distribution frequencies and
so would have a different space savings. Most commercial compression programs
use two or three coding schemes to adjust to different types of files.

In the preceding example, “DEED” was coded in 8 bits, a saving of 33% over
the twelve bits required from a fixed-length coding. However, “MUCK” requires
18 bits, more space than required by the corresponding fixed-length coding. The
problem is that “MUCK” is composed of letters that are not expected to occur
often. If the message does not match the expected frequencies of the letters, than
the length of the encoding will not be as expected either.

5.7 Further Reading

See Shaffer and Brown [SB93] for an example of a tree implementation where an
internal node pointer field stores the value of its child instead of a pointer to its
child when the child is a leaf node.

Many techniques exist for maintaining reasonably balanced BSTs in the face of
an unfriendly series of insert and delete operations. One example is the AVL tree of
Adelson-Velskii and Landis, which is discussed by Knuth [Knu98]. The AVL tree
(see Section 13.2) is actually a BST whose insert and delete routines reorganize the
tree structure so as to guarantee that the subtrees rooted by the children of any node
will differ in height by at most one. Another example is the splay tree [ST85], also
discussed in Section 13.2.

See Bentley’s Programming Pearl “Thanks, Heaps” [Ben85, Ben88] for a good
discussion on the heap data structure and its uses.

The proof of Section 5.6.1 that the Huffman coding tree has minimum external
path weight is from Knuth [Knu97]. For more information on data compression
techniques, see Managing Gigabytes by Witten, Moffat, and Bell [WMB99], and
Codes and Cryptography by Dominic Welsh [Wel88]. Tables 5.23 and 5.24 are
derived from Welsh [Wel88].

5.8 Exercises

5.1 Section 5.1.1 claims that a full binary tree has the highest number of leaf
nodes among all trees with n internal nodes. Prove that this is true.

5.2 Define the degree of a node as the number of its non-empty children. Prove
by induction that the number of degree 2 nodes in any binary tree is one less
than the number of leaves.

5.3 Define the internal path length for a tree as the sum of the depths of all
internal nodes, while the external path length is the sum of the depths of all
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leaf nodes in the tree. Prove by induction that if tree T is a full binary tree
with n internal nodes, I is T’s internal path length, andE is T’s external path
length, then E = I + 2n for n ≥ 0.

5.4 Explain why function preorder2 from Section 5.2 makes half as many
recursive calls as function preorder. Explain why it makes twice as many
accesses to left and right children.

5.5 (a) Modify the preorder traversal of Section 5.2 to perform an inorder
traversal of a binary tree.

(b) Modify the preorder traversal of Section 5.2 to perform a postorder
traversal of a binary tree.

5.6 Write a recursive function named search that takes as input the pointer to
the root of a binary tree (not a BST!) and a value K, and returns true if
value K appears in the tree and false otherwise.

5.7 Write an algorithm that takes as input the pointer to the root of a binary
tree and prints the node values of the tree in level order. Level order first
prints the root, then all nodes of level 1, then all nodes of level 2, and so
on. Hint: Preorder traversals make use of a stack through recursive calls.
Consider making use of another data structure to help implement the level-
order traversal.

5.8 Write a recursive function that returns the height of a binary tree.
5.9 Write a recursive function that returns a count of the number of leaf nodes in

a binary tree.
5.10 Assume that a given BST stores integer values in its nodes. Write a recursive

function that sums the values of all nodes in the tree.
5.11 Assume that a given BST stores integer values in its nodes. Write a recursive

function that traverses a binary tree, and prints the value of every node who’s
grandparent has a value that is a multiple of five.

5.12 Write a recursive function that traverses a binary tree, and prints the value of
every node which has at least four great-grandchildren.

5.13 Compute the overhead fraction for each of the following full binary tree im-
plementations.

(a) All nodes store data, two child pointers, and a parent pointer. The data
field requires four bytes and each pointer requires four bytes.

(b) All nodes store data and two child pointers. The data field requires
sixteen bytes and each pointer requires four bytes.

(c) All nodes store data and a parent pointer, and internal nodes store two
child pointers. The data field requires eight bytes and each pointer re-
quires four bytes.
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(d) Only leaf nodes store data; internal nodes store two child pointers. The
data field requires eight bytes and each pointer requires four bytes.

5.14 Why is the BST Property defined so that nodes with values equal to the value
of the root appear only in the right subtree, rather than allow equal-valued
nodes to appear in either subtree?

5.15 (a) Show the BST that results from inserting the values 15, 20, 25, 18, 16,
5, and 7 (in that order).

(b) Show the enumerations for the tree of (a) that result from doing a pre-
order traversal, an inorder traversal, and a postorder traversal.

5.16 Draw the BST that results from adding the value 5 to the BST shown in
Figure 5.13(a).

5.17 Draw the BST that results from deleting the value 7 from the BST of Fig-
ure 5.13(b).

5.18 Write a function that prints out the node values for a BST in sorted order
from highest to lowest.

5.19 Write a recursive function named smallcount that, given the pointer to
the root of a BST and a key K, returns the number of nodes having key
values less than or equal to K. Function smallcount should visit as few
nodes in the BST as possible.

5.20 Write a recursive function named printRange that, given the pointer to
the root to a BST, a low key value, and a high key value, prints in sorted
order all records whose key values fall between the two given keys. Function
printRange should visit as few nodes in the BST as possible.

5.21 Describe a simple modification to the BST that will allow it to easily support
finding the Kth smallest value in Θ(log n) average case time. Then write
a pseudo-code function for finding the Kth smallest value in your modified
BST.

5.22 What are the minimum and maximum number of elements in a heap of
height h?

5.23 Where in a max-heap might the smallest element reside?
5.24 Show the max-heap that results from running buildHeap on the following

values stored in an array:

10 5 12 3 2 1 8 7 9 4

5.25 (a) Show the heap that results from deleting the maximum value from the
max-heap of Figure 5.20b.

(b) Show the heap that results from deleting the element with value 5 from
the max-heap of Figure 5.20b.
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5.26 Revise the heap definition of Figure 5.19 to implement a min-heap. The
member function removemax should be replaced by a new function called
removemin.

5.27 Build the Huffman coding tree and determine the codes for the following set
of letters and weights:

Letter A B C D E F G H I J K L
Frequency 2 3 5 7 11 13 17 19 23 31 37 41

What is the expected length in bits of a message containing n characters for
this frequency distribution?

5.28 What will the Huffman coding tree look like for a set of sixteen characters all
with equal weight? What is the average code length for a letter in this case?
How does this differ from the smallest possible fixed length code for sixteen
characters?

5.29 A set of characters with varying weights is assigned Huffman codes. If one
of the characters is assigned code 001, then,

(a) Describe all codes that cannot have been assigned.
(b) Describe all codes that must have been assigned.

5.30 Assume that a sample alphabet has the following weights:

Letter Q Z F M T S O E
Frequency 2 3 10 10 10 15 20 30

(a) For this alphabet, what is the worst-case number of bits required by the
Huffman code for a string of n letters? What string(s) have the worst-
case performance?

(b) For this alphabet, what is the best-case number of bits required by the
Huffman code for a string of n letters? What string(s) have the best-
case performance?

(c) What is the average number of bits required by a character using the
Huffman code for this alphabet?

5.31 You must keep track of some data. Your options are:
(1) A linked-list maintained in sorted order.
(2) A linked-list of unsorted records.
(3) A binary search tree.
(4) An array-based list maintained in sorted order.
(5) An array-based list of unsorted records.
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For each of the following scenarios, which of these choices would be best?
Explain your answer.

(a) The records are guaranteed to arrive already sorted from lowest to high-
est (i.e., whenever a record is inserted, its key value will always be
greater than that of the last record inserted). A total of 1000 inserts will
be interspersed with 1000 searches.

(b) The records arrive with values having a uniform random distribution
(so the BST is likely to be well balanced). 1,000,000 insertions are
performed, followed by 10 searches.

(c) The records arrive with values having a uniform random distribution (so
the BST is likely to be well balanced). 1000 insertions are interspersed
with 1000 searches.

(d) The records arrive with values having a uniform random distribution (so
the BST is likely to be well balanced). 1000 insertions are performed,
followed by 1,000,000 searches.

5.9 Projects

5.1 Reimplement the composite design for the binary tree node class of Fig-
ure 5.11 using a flyweight in place of null pointers to empty nodes.

5.2 One way to deal with the “problem” of null pointers in binary trees is to
use that space for some other purpose. One example is the threaded binary
tree. Extending the node implementation of Figure 5.7, the threaded binary
tree stores with each node two additional bit fields that indicate if the child
pointers lc and rc are regular pointers to child nodes or threads. If lc
is not a pointer to a non-empty child (i.e., if it would be null in a regular
binary tree), then it instead stores a pointer to the inorder predecessor of that
node. The inorder predecessor is the node that would be printed immediately
before the current node in an inorder traversal. If rc is not a pointer to a
child, then it instead stores a pointer to the node’s inorder successor. The
inorder successor is the node that would be printed immediately after the
current node in an inorder traversal. The main advantage of threaded binary
trees is that operations such as inorder traversal can be implemented without
using recursion or a stack.
Reimplement the BST as a threaded binary tree, and include a non-recursive
version of the preorder traversal

5.3 Implement a city database using a BST to store the database records. Each
database record contains the name of the city (a string of arbitrary length)
and the coordinates of the city expressed as integer x- and y-coordinates.
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The BST should be organized by city name. Your database should allow
records to be inserted, deleted by name or coordinate, and searched by name
or coordinate. Another operation that should be supported is to print all
records within a given distance of a specified point. Collect running-time
statistics for each operation. Which operations can be implemented reason-
ably efficiently (i.e., in Θ(log n) time in the average case) using a BST? Can
the database system be made more efficient by using one or more additional
BSTs to organize the records by location?

5.4 Create a binary tree ADT that includes generic traversal methods that take a
visitor, as described in Section 5.2. Write functions count and BSTcheck
of Section 5.2 as visitors to be used with the generic traversal method.

5.5 Implement a priority queue class based on the max-heap class implementa-
tion of Figure 5.19. The following methods should be supported for manip-
ulating the priority queue:

void enqueue(int ObjectID, int priority);
int dequeue();
void changeweight(int ObjectID, int newPriority);

Method enqueue inserts a new object into the priority queue with ID num-
ber ObjectID and priority priority. Method dequeue removes the
object with highest priority from the priority queue and returns its object ID.
Method changeweight changes the priority of the object with ID number
ObjectID to be newPriority. The type for Elem should be a class that
stores the object ID and the priority for that object. You will need a mech-
anism for finding the position of the desired object within the heap. Use an
array, storing the object with ObjectID i in position i. (Be sure in your
testing to keep the ObjectIDs within the array bounds.) You must also
modify the heap implementation to store the object’s position in the auxil-
iary array so that updates to objects in the heap can be updated as well in the
array.

5.6 The Huffman coding tree function buildHuff of Figure 5.29 manipulates
a sorted list. This could result in a Θ(n2) algorithm, because placing an inter-
mediate Huffman tree on the list could take Θ(n) time. Revise this algorithm
to use a priority queue based on a min-heap instead of a list.

5.7 Complete the implementation of the Huffman coding tree, building on the
code presented in Section 5.6. Include a function to compute and store in a
table the codes for each letter, and functions to encode and decode messages.
This project can be further extended to support file compression. To do so
requires adding two steps: (1) Read through the input file to generate actual
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frequencies for all letters in the file; and (2) store a representation for the
Huffman tree at the beginning of the encoded output file to be used by the
decoding function. If you have trouble with devising such a representation,
see Section 6.5.


